Айниятро исбот кунед:
\((\cos^{-1}{2\alpha}+\operatorname{ctg}({\frac{5\pi}{2}+2\alpha}))\operatorname{ctg}({\frac{5\pi}{4}-\alpha}) = 1\)
\(A = (\cos^{-1}{2\alpha}+\operatorname{ctg}({\frac{5\pi}{2}+2\alpha}))\operatorname{ctg}({\frac{5\pi}{4}-\alpha})\)
\(\cos^{-1}{2\alpha} = \frac{1}{\cos{2\alpha}}\)
\(\operatorname{ctg}({\frac{5\pi}{2}+2\alpha}) = \operatorname{ctg}({2\pi+\frac{\pi}{2}+2\alpha}) = \operatorname{ctg}({\frac{\pi}{2}+2\alpha}) =\)
\(= -\operatorname{tg}{2\alpha} =-\frac{\sin{2\alpha}}{\cos{2\alpha}}\)
\(A = \left(\frac{1}{\cos{2\alpha}}+(-\frac{\sin{2\alpha}}{\cos{2\alpha}})\right)\operatorname{ctg}({\frac{5\pi}{4}-\alpha})\)
\(\operatorname{ctg}({\frac{5\pi}{4}-\alpha}) = \operatorname{ctg}({\pi+\frac{\pi}{4}-\alpha}) = \operatorname{ctg}({\frac{\pi}{4}-\alpha}) = \)
\( = \frac{\cos{\frac{\pi}{4}-\alpha}}{\sin{\frac{\pi}{4}-\alpha}} = \frac{\cos{\frac{\pi}{4}}cos{\alpha}+\sin{\frac{\pi}{4}}sin{\alpha}}{\sin{\frac{\pi}{4}}cos{\alpha}-\cos{\frac{\pi}{4}}sin{\alpha}} = \frac{\cos{\alpha}+\sin{\alpha}}{\cos{\alpha}-\sin{\alpha}}\)
\(A = (\frac{1}{\cos{2\alpha}}-\frac{\sin{2\alpha}}{\cos{2\alpha}})\cdot\frac{\cos{\alpha}+\sin{\alpha}}{\cos{\alpha}-sin{\alpha}}\)
\(\frac{1}{\cos{2\alpha}}-\frac{\sin{2\alpha}}{\cos{2\alpha}} = \frac{1-\sin{2\alpha}}{\cos{2\alpha}} = \frac{1-2\sin{\alpha}\cos{\alpha}}{\cos{2\alpha}}=\)
\( = \frac{\cos^2{\alpha}-2\sin{\alpha}\cos{\alpha}+\sin^2{\alpha}}{\cos{2\alpha}}\)
\(\frac{\cos^2{\alpha}-2\sin{\alpha}\cos{\alpha}+\sin^2{\alpha}}{\cos{2\alpha}} = \frac{\cos^2{\alpha}-2\sin{\alpha}\cos{\alpha}+\sin^2{\alpha}}{\cos^2{\alpha}-\sin^2{\alpha}} =\)
\(= \frac{(\cos{\alpha}-\sin{\alpha})(\cos{\alpha}-\sin{\alpha})}{(\cos{\alpha}+\sin{\alpha})(\cos{\alpha}-\sin{\alpha})}=\)
\(= \frac{\cos{\alpha}-\sin{\alpha}}{\cos{\alpha}+\sin{\alpha}}\)
\(A = \frac{\cos{\alpha}-\sin{\alpha}}{\cos{\alpha}+\sin{\alpha}}\cdot\frac{\cos{\alpha}+\sin{\alpha}}{\cos{\alpha}-\sin{\alpha}} = 1\)
\(A = 1\)
Исбот шуд.
Айниятро исбот кунед: \((\cos^{-1}{2\alpha}+\operatorname{ctg}({\frac{5\pi}{2}+2\alpha}))\operatorname{ctg}({\frac{5\pi}{4}-\alpha}) = 1\)
- Информация о материале
- Автор: Раҳимҷон Ҳакимов
- Категория: Тригонометрия
- Просмотров: 677
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)